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Abstract 

Gilmer and Heinzer have considered the question: For an indexed family of fields X={&},EA, 
under what conditions does there exist a zero-dimensional ring R (always commutative with 
unity) such that % is up to isomorphism the family of residue fields {R/M,},,A of R? If X is 
the family of residue fields of a zero-dimensional ring R, then the associated bijection from the 
index set A to the spectrum of R (with the Zariski topology) gives A the topology of a Boolean 
space. The present paper considers the following question: Given a field F, a Boolean space X 
and a family {KX}XE~ of extension fields of F, under what conditions does there exist a zero- 
dimensional F-algebra R such that X is up to F-isomorphism the family of residue fields of 
R and the associated bijection from X to Spec(R) is a homeomorphism? A necessary condition 
is that given x in X and any tinite extension E of F in K,, there exist a neighborhood V of 
x and, for each y in V, an F-embedding of E into KY. We prove several partial converses of 
this result, under hypotheses which allow the “straightening” of the F-embeddings to make them 
compatible. We give particular attention to the cases where X has only one accumulation point 
and where X is countable; and we provide several examples. @ 1998 Elsevier Science B.V. All 
rights reserved. 

AIMS class~cation: 13B30; 13F99 

1. Introduction and general results 

In [4], Gilmer and Heinzer consider the following question: For an indexed family 

of fields X = {Ka}aE~, under what conditions is X up to isomorphism the family of 

residue fields {R/Ma}a~~ of some zero-dimensional ring R (always commutative with 
unity)? Since the family of residue fields of a ring R is, up to isomorphism, the same 
as the family of residue fields of R modulo its nilradical, we may assume without loss 
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of generality that R is reduced. If such a ring exists, Gilmer and Heinzer say that X is 

realizable and call the ring R a realization of X. We will often consider the relative 

version of the realizability question, in which each K, is assumed to be an extension 

of a common base field F: If there is a zero-dimensional F-algebra R whose residue 

fields are exactly the K, up to F-isomorphism, we say that X is F-realizable and that 

R is an F-realization of X. 

If R is a zero-dimensional ring, then X = Spec(R) is a Boolean space, that is, X 

is compact, Hausdorff and totally disconnected. Therefore, in considering the family 

of residue fields of a zero-dimensional ring, it is natural to consider the following 

question, which brings in topological considerations: 

Question 1.1. Given a Boolean space X, which assignments of fields to the points of 

X come from affine schemes? 

In this connection we use the following definition. 

Definition. Let X be a Boolean space and X = {Kx}xE~ a family of fields indexed 

by X. We say that the pair (X,X) is realizable if there exist a (necessarily zero- 

dimensional) reduced ring R and a homeomorphism X -+ Spec(R) :x H P, (where 

Spec(R) has the usual Zariski topology) such that, for each point x in X, we have 

RIP, N K,. In this case we say that R is a realization of (X, AC). 

Let F be a field, let X be a Boolean space, and let X = {K, :x EX} be a family 

of extension fields of F indexed by X. We say that (X,X) is F-realizable if there 

exist a reduced F-algebra R and a homeomorphism X + Spec(R) :x H P, such that 

R/P, Z,Q Kx for every n in X. In this case we say that R is an F-realization of (X, X). 

Thus, a family X = {Kx}xE~ of fields is realizable if and only if there is a Boolean 

topology on X and a realization of the pair (X, 3). An example due to R. Wiegand 

[4, Example 6.41 shows that a pair (X,X) can have two non-isomorphic realizations. 

The main results of this section are Theorems 1.2 and 1.4, which give, respectively, a 

necessary and a sufficient condition for realizability. At first sight these two conditions 

appear very similar, in that both criteria require that certain of the fields be embeddable 

in others. However, there is the distinction between the two criteria that in the necessary 

condition there is no requirement that the embeddings be compatible, whereas in the 

sufficient condition the embeddings are in fact set-theoretic inclusions. Much of the 

paper is devoted to finding situations under which embeddings can be made compatible, 

in order to narrow the gap between the necessary condition of (1.2) and the sufficient 

condition of (1.4) for realizability. 

In Section 2 we consider the question of F-realizability when the infinite Boolean 

space X has a single non-isolated point. Write X =A U {co}, where A is the set of 

isolated points, and suppose {Ka}aE~ is a family of extension fields of F. For which 

algebraic extensions L/F does the assignment Km = L give an F-realizable pair? As- 

suming L/F is countably generated, we show in (2.7) that a necessary and sufficient 

condition for F-realizability is that each finite extension of F contained in L has an 

F-embedding into all but finitely many of the Kx’s. 
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In Section 3 we present several examples illustrating realizability for infinite Boolean 

spaces with one non-isolated point. In Section 4 we consider realizability for count- 

able Boolean spaces. We give examples of families of fields realizable for certain 

Boolean spaces but not for others. We prove in Theorem 4.11 a sufficient condition 

for realizability and raise in (4.2) a question for further investigation. 

If X = Spec(R) we will sometimes write P, instead of x when we are thinking of 

x as a prime ideal rather than a point in a topological space. Also, if r E R, we let 

V(r) = {P E Spec(R) : r E P} and D(r) = Spec(R) - V(r). If R is zero-dimensional and 

reduced, these sets are clopen, since V(r) = V(e), where e is the idempotent generating 

the same principal ideal as r. We will usually identify Spec(R/eR) with V(e). 

Theorem 1.2. Let F be a field and R a zero-dimensional reduced F-algebra. Let 
X = Spec(R), and put K, = R/P, for each x E X. Fix x E X, and let E’ be any field 
such that F C E’ C K, and [E’ : F] < CO. There exist a clopen neighborhood V = V(e) 

of x and a field E such that F GE C R/eR and E maps F-isomorphically onto E’ 
under the canonical map RIeR -W R/P,. In particular, for each y E V there exists an 
F-embedding of E’ into KY. 

Proof. Suppose first that E’ is a simple extension of F, say, E’ = F(c’). Let f be the 

manic minimal polynomial for c’ over F. Choose an element c in R mapping to c’ via 

the canonical map R ++ K,. Then f(c) E P,, so V( f (c)) is a clopen neighborhood of x. 

Let C be the image of c in R/f (c)R, and let E = F[E] CR/f (c)R. The canonical map 

R/f (c)R --H R/P, carries E onto E’, and dimF(E) 5 deg(f) = dim&E’), so it follows 

that the map from E onto E’ is an F-isomorphism. 

If E’ is not a simple extension of F, there is a field fi such that F c F,’ c E’ and 

E’= F;‘(c’) for some c’ in E’. By induction on [E’ : F] there exist a clopen neigh- 

borhood V(el) of x defined by an idempotent et in P,, and a field F, such that 

F c Fl c RI :=R/elR and Fl maps F-isomorphically onto F;’ under the canonical map 

RI + RIP,. Applying the case of a simple extension to Fl and Spec(R1) = V(ei ), we 

get a clopen neighborhood V(e) of x in V(et ) and a field E such that fi c E C_Rl/eRI 

and E maps Ft-isomorphically (hence F-isomorphically) onto E’ under the canonical 

map R/eR=Rl/eRI -W R1I(P,/elR)=R/P,. 0 

Since every neighborhood of a non-isolated point in a Boolean space is infinite, 

Theorem 1.2 implies: 

Corollary 1.3. Let F be a field, let X be an infinite Boolean space, and let {K,),,x 
be a family of extension fields of F. Assume (X, ,X) is F-realizable. If z is a non- 
isolated point of X, then every subfield E of K, of jinite degree over F is F-isomorphic 
to a subfield of K, for infinitely many points x in X. If X is countable, then these 
infinitely many points x can all be selected to be isolated. 

The last sentence follows from the fact that in a countable Boolean space, the set 

of isolated points is dense (cf. (4.4) below). 
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Example. For each positive integer i, let Ki be the field obtained by adjoining to the 

field of rational numbers Q the square roots of all prime integers except the first i 
primes. (So, e.g., K2 = O(&fi, v%,. . .).) Note that 

KI~K~>K~>... and fi Ki=Q. 
i=l 

Corollary 1.3 implies that the family x = {Ki}z, is not realizable. For, suppose R is 

a realization of %. Choose a non-isolated point z in the spectrum of R, and let L be 

the residue field of R at z. Then by Theorem 1.2 every finite extension of Q in L must 

be embeddable in infinitely many of the elements of x. But if L = K, and p is the 

(n + 1 )st prime, then fi E L, but 0 has no possible image in any K, with m > n; 
so we have a contradiction. 

The next result is a partial converse to (1.2). Other partial converses with different 

hypotheses appear in Theorems 2.7 and 4.11 below. 

Theorem 1.4. Let X be a Boolean space, F a jield, Sz an extension field of F, and 

x = {K, }xu a family of subfields of .Q each of which contains F. Assume that 
for each x in X and each c in a set C, of generators of K,/F, there is a clopen 
neighborhood U of x such that for all y in U, c E KY. Then the pair (X,x) is 
F-realizable. 

Proof. Give Q the discrete topology, let T denote the ring of continuous functions 

from X into 0, and let R be the subring of T consisting of those functions f :X + 52 
such that f(x) E K, for each x EX. It is easy to verify that each element of R generates 

the same R-ideal as an idempotent, so R is zero-dimensional reduced. 

For each clopen subset U of X, let eu be the element of R that is 1 at each element 

of U and 0 at each element of X - U. Let P, be the kernel of the evaluation map 

f H f (x). If x and y are distinct elements of X and U is a clopen neighborhood of 

x such that y $ U, then eu E P, - P,; hence the Px’s are distinct. Compactness and 

clopen refinements imply every proper ideal is contained in some P,. The map from 

X to Spec(R) is a continuous bijection and hence a homeomorphism. 

To complete the proof it suffices to see that each c in C, is in the image of R/P, + Kx: 
Take a clopen neighborhood U of x for which c E KY for all y E U. Then ceu E R and 

the image of ceu in RIP, is c. 0 

If E,K are extension fields of a field F inside a common algebraic extension such 

that KfF is normal and E has an F-embedding into K, then E C K. Thus, combining 

(1.2) and (1.4), we have the following: 

Corollary 1.5. Let F be a jeld, 52 an algebraic closure of F, X a Boolean space, and 
x = (Kn}xcx is a family of subjields of Sz each of which contains F. Suppose x 
has the property that each KJF is normal. (This holds, for example, if F is algebraic 
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over a finite field.) Then the following conditions are equivalent: 
(1) The pair (X, ,X) is F-realizable. 
(2) For each xeX and each c in a set of generators for KJF, there is a clopen 

neighborhood U of x such that c E KY for all y E U. 

(3) For each x EX and each finite extension E of F in K,, there is a clopen neigh- 
borhood U of x such that, for all y E U, E has an F-embedding into KY. 

Another corollary of (1.2) is the following: 

Corollary 1.6. Let F be a field, Q an algebraic closure of F, and x = {Ka}aE~ an 
injinite family of subfields of L each of which contains F. Assume that K, n Kt, = F 
tf a # b. If 9 is a family of algebraic extensions of F that contains s?, and tf 9 is 
F-realizable, then F E 9. 

Proof. Suppose R is an F-realization of 3, and let X = Spec(R). Then the index set 

A is identified with an infinite subset of X, which has an accumulation point x in X. 

Let L be the residue field of R at x. If L # F, choose a E L -F. By Theorem 1.2, IX has 

conjugates (over F) in infinitely many of the K,‘s. But since K, n Kt, = F for a # b, 
this would mean that c( had infinitely many conjugates, a contradiction. 0 

Here are some examples to which (1.6) applies: 

Example 1.7. (1) Let Sz be an algebraic closure of the prime field F, and let {pn}E, 
be a family of distinct prime integers. Suppose {K,}gl is a family of subfields of Q, 

with [K, : F] = p,, for each n. Then the K,,‘s are pairwise linearly disjoint over F. By 

(1.6), if 9 is a realizable family of algebraic extensions of F that contains {K,}zl, 
then FE 9. 

(2) Let F be a prime field, let Q be an algebraic closure of F, and let 3 be the 

family of proper extensions of F in 52. Then Y is not realizable, for there exists 

an infinite subfamily {Kn}aEA of 3 such that the K,‘s are pairwise linearly disjoint 

over F. 

The restriction in (1.6) that the fields in 9 be algebraic over F is crucial. If, for 

example, { pn}zl is a family of distinct prime integers and K,, is an extension of F 
of degree p,, for each n, it is possible to realize the family {K,,},zl as the family of 

residue fields at maximal ideals of a localization of the polynomial ring F[x]. Therefore, 

as noted below in (2.1.1), the family of fields {K,},oO=l U {F(x)} is realizable. 

Remark 1.8. If X = {Kn}aE~ is a family of fields, the ring T = naEA K, is zero- 

dimensional, and each maximal ideal M, in Spec(T) that is associated with a coordinate 

a in A (i.e., A4, is the kernel of the projection of T onto K,) is principal (generated 

by the idempotent element that projects to 0 in K, and to 1 in each Kb for all b #a). 
Therefore X is up to isomorphism a subset of the family of residue fields of T. If 

the set A is infinite, however, then the direct sum I = P&A K, is a proper ideal of 
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T and T has additional maximal ideals other than the M,, namely the maximal ideals 

containing I. Indeed, if A is infinite, there can never be a bijection between A and 

Spec(T) since Spec( T) has cardinality 22’A’ . ([6, 9F, p. 1361 or [9, Item 4, p. 1331 

says this is the number of ultrafilters of subsets of A, and maximal ideals of T are in 

one-to-one correspondence with these ultrafilters.) 

2. The case of a single limit point 

It seems reasonable to consider Question 1 .l in the case of the one-point com- 

pactification A* of an infinite discrete space A. (Recall that A* is the Boolean space 

A U {a}, where the neighborhoods of 0~) are the complements of finite subsets of A.) 

If x- = {Ka)n64* is a family of fields, and R is a realization of the pair (A*, X), 

then R has precisely one non-principal maximal ideal-the only non-isolated point in 

Spec(R). Thus the limit point is distinguished both algebraically and topologically. 

Definition. Given a family X = {Ka}aE~ of fields, a field L is said to be admissible for 

the family X if the pair (A*, X*) is realizable, where X* := {Ka}aE~*, with K, = L. 

If each K, contains a base field F, the extension field L of F is said to be F-admissible 

for the family X’ provided the pair (A*, X*) is F-realizable. 

Suppose L is admissible for the family of fields {K,}, with a realization R having 

principal primes P, and non-principal prime Q. Then since Q is the limit of the P,‘s 

in Spec(R), it is tempting to believe that L = R/Q is in some sense a limit of the fields 

K, = R/P,. It is difficult, however, to interpret this heuristic, as we illustrate using the 

following source of examples. 

(2.1) Let R be an arbitrary commutative ring, and for P in Spec(R) let k(P) denote 

the field of fractions of the integral domain R/P. The family of fields X = {k(P) : P E 

Spec(R)} is realizable [ 10, 11,4, (2.5)] as the family of residue fields of a reduced zero- 

dimensional ring R” which is an extension ring of R/n, where n is the nilradical of R. 

Moreover, if P is a maximal ideal of R that is the radical of a finitely generated ideal, 

then PRO is a principal maximal ideal. Therefore, if R is a one-dimensional integral 

domain with Noetherian spectrum, then R” is a reduced zero-dimensional ring with at 

most one maximal ideal that is not finitely generated. 

(2.1 .l ) Let p be a prime number, and, for each positive integer i, let Ki be a 

field with [Kil = pi. Then the simple transcendental extension Kl(x) is admissible for 

{K,}p,. This follows from (2.1) if we take for R a localization of the polynomial ring 

Kl[x] at the complement of the union of the ideals generated by a family of irreducible 

polynomials, one of each positive integral degree. 

(2.1.2) Let F be an infinite field, and for each positive integer i, let Ki = F. Then 

the simple transcendental extension F(n) is admissible for {Kj}z~,. Again this follows 

from (2.1): Let R be a localization of the polynomial ring F[x] at the complement of 
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the union of the ideals generated by the polynomials x -a as a varies over a countably 

infinite subset of F. 

(2.1.3) Other interesting examples of fields L admissible for a family of fields X 

follow from results of Heitmann in [8]. In particular, let X be a countable family of 

fields with the property that for every prime number p there are only finitely many 

fields in X of characteristic p. Then there is a field L of characteristic zero admissible 

for Xx. 

In the next few results we interpret the results of Sect. 1 in the case of a one-point 

compactification of an infinite discrete space. Theorem 2.2 (an immediate consequence 

of Theorem 1.2) gives a general necessary condition for F-admissibility; the sufficiency 

of this condition, under additional hypotheses, is treated in (2.3), (2.4), (2.7) and 

(2.8). 

Theorem 2.2. Let {Ka}aEA U {L} be a family of extension fields of a field F. I__ L is 
F-admissible for the family {Ka}aE~, then every subjield E of L of jinite degree over 
F has F-embeddings into all but finitely many of the K,, 

We thank Steve McAdam for the results (2.3) and (2.4) given below. 

Applying Theorem 1.4 to the case of the one-point compactification of an infinite 

discrete space gives: 

Theorem 2.3. Let D be an extension field of a field F, let X = {Kn}nE~ be an infinite 
family of subjields of Sz, each containing F, and let L be a subjield of Sz containing F. 
If every element of L is in K, for all but finitely many a in A, then L is F-admissible 

for X. 

Applying Theorem 1.4 and Corollary 1.5 to the case of the one-point compactification 

of an infinite discrete space gives: 

Theorem 2.4. Let G?, F, K and L be as in Theorem 2.3. Assume in addition that Q is 
algebraic over F and that each K, is a normal extension of F. Then L is F-admissible 
for X if and only if each element of L is in K, for all but finitely many a in A. 

Let .X be a family of extension fields of a field F, and let L be an extension field 

of F. An interesting question is: If L is admissible for X, is L necessarily F-admissible 

for X? The proof of (1.2), concerning F-realizability, uses the fact that R, as an F- 
algebra, contains a copy of F. Suppose R is a zero-dimensional reduced ring that 

realizes a family of extension fields of F. It seems natural to ask whether R must 

then contain an isomorphic copy of F. However, this need not be: An example of Ray 

Heitmann [3, pp. 46-471 shows that for a simple transcendental extension field Q(t) 
of the field Q of rational numbers, there exists a reduced zero-dimensional ring R such 

that every residue field of R is isomorphic to Q(t), but Q(t) does not embed in R. 
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(Of course, the family of residue fields of Heitmann’s example R is Q(t)-realizable by 

a different ring.) 

To prove other partial converses of Theorem 2.2, we use some preparatory results. 

Lemma 2.5. Let F be a jield, and let R be a reduced zero-dimensional F-algebra. 

Assume that Spec(R) = {P, = e,R},,A u {Pm}, where A is an infinite set, ez = e, for 
each a in A, and the composite map F c-) R 4 R/PO0 is an isomorphism. Let f (x> be 
an irreducible manic polynomial in F[x]; assume for each a in A that f(x) has a root 
CL in K, := R/P,, and let c, in R be a preimage of CL (possibly varying with a). There 
exists a reduced zero-dimensional integral extension ring S of R such that: 
(0) the composite injection FL) R c-) S extends to an injection of E = F[x]/( f (x)) 

into S, so that S has the structure of an E-algebra that extends its structure as 
an F-algebra, 

(1) Spec(S) = {eaS}aEA U {P,S} (for the same idempotents e,), 
(2) for each a in A, S/e, S NE K,, and the composite map E -+ S + S/e, S = K, maps 

both the element c =x + (f(x)) of E and the element c, of R to CL in Ka, and 
(3) the composite map E -+ S 4 S/P,S is an isomorphism. 

Proof. Let Z be the ideal of the polynomial ring R[x] generated by f(x) and the 

elements of ((1 - e,)(x - c,)},~A, and let S = R[x]/Z. Then Zn F[x] = f (x)F[x], so 
E = F[x]/( f (x)) v S extends F + S and gives S the structure of an E-algebra. Since 

the image of e, in Rpb = R/P6 EF Kb is 0 if a = b and 1 if a # b, we have ZRp, [x] = (x - 
cL)K,[x] for each a in A. Therefore e,S is a prime ideal and for each a, S/e,S SE K, 
and the composite map E = F[c] t S --+Sje, = K, maps c--+ CL. On the other hand, 

the image of e, in Rpm = R/Pm = F is 1 for each a. Therefore ZRp,[x] = f (x)F[x]. 

Hence P,S is a prime ideal and the composite map E -+ S + S/P& = F[x]/( f (x)) is 

an isomorphism of E onto S/P&Y. 0 

Lemma 2.5 gives an extension S of the F-algebra R such that: 

(i) as topological spaces Spec(R) and Spec(S) are homeomorphic, 

(ii) the residue fields of R and S at corresponding isolated points are isomorphic, 

(iii) the residue field E of S at its unique non-isolated point is a simple algebraic 

extension of the residue field F of R at its unique non-isolated point, and 

(iv) S has an E-algebra structure extending its F-algebra structure. 

We show in (2.7) that in certain cases the construction given in Lemma 2.5 can 

be iterated to prove admissibility with respect to a family {Ka}aE~ of certain infinite 

algebraic extensions of F. The obstruction to a direct extension of Lemma 2.5 is that 

we must be sure that the set of extension rings of the base ring from repeated used 

of (2.5) can be arranged to be a directed union. We use the following lemma in the 

proof of (2.7). The idea involved in the proof may be viewed as an application of the 

Konig Graph Theorem, or, alternatively, as the fact that an inverse limit of an inverse 

system of finite nonempty sets is nonempty. 
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Lemma 2.6. Suppose a field extension L/F is the directed union of a family d of 
subjields of L finite algebraic over F, and let KjF be a field extension. If each E in 
E has an F-embedding into K, then there is an F-embedding of L into K. 

Proof. For each E E 8, let ME be the (finite) set of F-embeddings of E 

into K. Give to each IWE the discrete topology and let X = nEEB ME with the product 

topology. For each finite subset S of &‘, let XS denote the subset of X consisting of the 

“8-tuples” of functions (fE)EEg such that if El, E2 E S with El & E2, then fez Is, = fe, . 

Since &_-ME has the discrete topology (because S is finite), the sets Xs are closed 

subsets of X. Because & is directed, our hypothesis implies that every finite in- 

tersection of sets Xs is nonempty. Since X is compact by Tychonoff’s Theorem, 

n {Xs : S is a finite subset of 6) is nonempty. An element of this intersection is a co- 

herent b-tuple of functions that determines an F-embedding of UEEl E = L 
into K. 0 

Theorem 2.7. Let L/F be a countably generated algebraic field extension, and let 

x = {&)~EA be a family of extension fields of F. Write L = U,“=, E,,, where F = Eo C 

E, GE, C . . . . and E,,+l is a simple extension of E,, for each n > 0. The following are 
equivalent: 

(i) L is F-admissible for %I 
(ii) Every subjield of L/F of finite degree over F has an F-embedding into all but 

finitely many of the Ka’s. 
(iii) Each E,, has an F-embedding into all but finitely many of the K,‘s. 

Proof. Theorem 2.2 shows that (i) implies (ii), and (ii) implies (iii) trivially. Assuming 

(iii), we will prove (i). Let Rc be the (unital) F-subalgebra of the direct product 

naEA K, generated by the direct sum @&AK,. Then, by [4, (2.7)] we have 

(1) Spec(&) is homeomorphic to A* := A U {co}, the one-point compactification with, 

say, P, the prime ideal corresponding to the point a E A and with Porn the non- 

principal prime ideal; 

(2) Ro/P, + K, for all a in A; and 

(3) the composite map FL) Ro + Ro/Pooo is an F-isomorphism. 

Choose finite subsets B1 & B2 C . . . of A such that for a $! B, the field E,, is 

F-isomorphic to a subfield of K,. For a E A - (IJ,“=, B,) choose (using (2.6)) an F- 
embedding q& : L -+ K,, and let &n : E,, -+ K, be the restriction of &. For a in B,+l -B,, 
let q& : E,, + K, be an F-algebra embedding, and for each j < n, define baj : Ej -+ K, 
to be the restriction of &. Thus $,, is defined for all pairs (m, a) such that a $ B,; 
and if j <m, then 4nm extends $aj, so &,, is an Ej-algebra embedding of E,,, into K,. 

For each a E A write P, = eaRO with ef = e,. We will use Lemma 2.5 to build an as- 

cending chain Ro C RI C R2 C . . . of reduced zero-dimensional F-algebras, each integral 

over the one below, such that for each n: 
(1’) Spec(R,)= {e R } n ,, &A U {P,,}; and for each a in A, R,/e,R, SF K,; 
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(2’) for the idempotent element w, = CbEBn (1 -q,) of Ro, R,jw,R, has an E,,-algebra 

structure extending its F-algebra structure such that for all a +! B,, the composite 

F-algebra embedding E, --+ R,/w,R, -+ R,je,R, = K, is &,; and 

(3’) the composite map E, + R,/w,R, + R,/P,, is an F-isomorphism of E, onto 

R,IP,, . 
Assuming for the moment that we have our ascending chain of rings, we put 

R, = U,“=, R, and P, = U,“=, P,,. It is easily checked that R, is an F-realization 

of the pair (A*, X*), where K, =L and X* = {Ka}aE~*. This proves (i). 

To build the chain of rings, assume inductively that we have constructed R,. Write 

E,+l = E,(c), and let g(x) be the minimal polynomial of c over E,. Let CL := 4a,n+i(~) 

for each a E A - B,, and let c, E T, := R,fw,R, be a preimage of CL. Observe that 

T, satisfies the conditions of (2.5) with respect to the field E,, the family of E,,- 

algebras {Ka}a~~-~. , the polynomial g(x), and the elements c, CL and c,. Let S,, be 

the integral extension ring of T, given by (2.5), and set R,+I := w,R, x S,. Then Rnfl 
is an extension ring of R, satisfying the conditions (l’), (2’) (3’). This completes the 

induction and the proof of (2.7). 0 

In the case where L is algebraic over its prime subfield, Theorem 2.7 gives the 

following: 

Corollary 2.8. Let L be a field algebraic over its prime field F, and let X = {Ko}aE~ 
be a family of fields of the same characteristic as F. Then L is admissible for .X if 
and only tf each subfield of L finite over F embeds in all but finitely many Ka’s. 

Remark 2.9. With {Ka}aE~, L and F as in (2.2), let KL denote the algebraic closure 

of F in K,, and let L’ be the algebraic closure of F in L. Then if L is F-admissible 

for {Ka}aE~, then L’ is F-admissible for {KL}aE~. To see this, suppose R is a zero- 

dimensional reduced F-algebra such that Spec(R) = {PO}aE~ U {Q}, where each P, is 

principal with R/P, Z,V K, and R/Q ZI, L. Then the integral closure R’ of F in R con- 

tains all the idempotent elements of R; so the canonical map Spec(R) + Spec(R’) is 

a bijective map of sets. Also, the fact that R’ is integrally closed in R implies that 

S-‘R’ is integrally closed in S’R for each multiplicatively closed subset S of R’; 
cf. [l, (5.12)]; hence if P,‘= P, fl R’ and Q’ = Qn R’, then Spec(R’) = {Pi}aEA U {Q’}, 

where R’/P,‘= KL and R’/Q’=L’. Therefore L’ is F-admissible for {KL}aG~. More- 

over, in view of (2.7), if L” is a countably generated subfield of L//F, then L” is 

F-admissible for both {Ka}aE~ and {KL}aC~. 

3. More examples on admissibility 

(3.1) Example (3.6) of [4] shows the existence of a zero-dimensional reduced ring 

R with the following properties: (1) Spec(R) = {PI, P2, . . .} U {Q}, where each fi is 

principal, so Spec(R) is the one-point compactification of a countably infinite discrete 
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space, and the field R/Q is admissible for the family {R/Pi}lEl, (2) the fields R/Pi are 

pairwise incomparable finite fields of the same characteristic, while the field R/Q is an 

absolutely algebraic infinite field of the same characteristic, (3) none of the fields R/P;: 

can be embedded in R/Q. 

(3.2) Steinitz numbers: Let F be a prime field of positive characteristic, and let 52 be 

an algebraic closure of F. Suppose {Ka}aE~ is a family of subfields of 52. Corollary 2.8 

gives precise conditions in order that a subfield L of 52 be admissible for {Ka}aE~. 

Each subfield K of s2 is uniquely determined by its Steinitz number defined as follows: 

let {pi}Et be an enumeration of the prime numbers. The Steinitz number, Y(K), of 

K is defined to be the tuple (st,~,. . .), where each si is either a nonnegative integer or 

the symbol 00, determined as follows: if K contains a field extension of F of degree 

py, but does not contain an extension of F of degree py”, then Si = m, while if K 

contains an extension of F of degree py for each nonnegative integer m, then si = 00. 

Each tuple (st,s~, . . .) is the Stei nitz number of a subfield of 52, and for subfields K 

and L of 52 with Steinitz numbers Y(K) = (SI,SZ,. . .) and Y(L) = (tl, t2,. . .), we have 

K 2 L if and only if Si < ti for every positive integer i. 

Suppose {&)a~~ is a family of subfields of 52 and ~(K,)=(s~I,s,~,. . .). We as- 

sociate with {Ka}aEA the tuple (et, e2,. . . ), where we define ei to be the nonnegative 

integer m if sat 2 m for all but finitely many a and s,i = m for infinitely many a; 

while if s,i > m for all but finitely many a holds for each nonnegative integer m, 

we define ei = 00. From (2.8) it follows that a subfield L of Sz with Steinitz number 

~V)=(t1,t2,...) is admissible for the family {Ka}aEA if and only if ti 2 ei for every 

positive integer i. Thus, for example, we have: (i) there exists an infinite field L that 

is admissible for {Ka}aEA if and only if either infinitely many of the ei are nonzero 

or at least one of the ei = 00; (ii) the field Sz is admissible for {Ka}aE~ if and only 

if every ei = cc; and (iii) the only subfield of Sz admissible for {Ka}aEA is F if and 

only if every ei = 0. We illustrate with several examples. 

(3.2.1) For each positive integer n, define K, to be the subfield of Q having Steinitz 

number Y(Kn)=(n,n - l,..., 2,1,0,0,. . .). Then each K,, is of finite degree over F, 

and the family {K,}E1 has the property that each associated ei = 00. Therefore s2 and 

every subfield of 52 is admissible for {K,}zl. 

(3.2.2) For each positive integer n, define K, to be the subfield of Sz having Steinitz 

number Y(K,)=(l,l,..., l,O, 0,. . .), that is, l’s in the first n positions and then 0’s. 

Then each K,, is of finite degree over F, and the family {K,},oO=l has the property that 

each associated ei is equal to 1. Therefore a subfield L of 52 is admissible for {K,}El 

if and only if the degree over F of every element of L is a product of distinct prime 

numbers. 

(3.2.3) To obtain an example such as (3.6) of [4] mentioned in (3.1), let K, have 

Steinitz number ,4a(K,) = (s,l,s,z, . . .), where snt = n,snn = 1, and sni = 0, for i different 

from 1 and n. 
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(3.3) Since the algebraic closure Sz of a countable field F is again countable, an 

easy way to get a family {K,,},W=, of finite algebraic extensions of F such that Sz 

is F-admissible for {Kn},oO=l is to enumerate the elements of 52, say Q= {cn}E1, 

and let K,, = F(q, . . . , c,). Then every subfield E of Q/F of finite degree over F is 

F-isomorphic to a subfield of K,, for all but finitely many of the K,,. Hence by (2.7) 

Sz is F-admissible for {K,,},oO=,. 

Discussion 3.4. Given a family of fields X = {Ki: i = 0, 1,2,. . .}, consider the follow- 

ing conditions: 

(1) Ko := L is admissible for the family % = {Ki: i = 1,2,. . .}. 

(2) There is a one-dimensional integral domain with fraction field L and with 9 the 

family of residue fields at the maximal ideals. 

(3) There is a one-dimensional integral domain with Noetherian spectrum, with fraction 

field L and with 99 as the family of residue fields at the maximal ideals. 

(4) There is a one-dimensional Noetherian domain with fraction field L and with 9 

the family of residue fields at the maximal ideals. 

(5) There is a principal ideal domain with fraction field L and with V the family of 

residue fields at maximal ideals. 

Obviously (5)+(4)+ (3)+(2), and by (2.1) (3)+(l). There are simple examples 

to show that, in general, (1) does not imply (2). For example, if L is a finite field, 

then L is not the fraction field of an integral domain of positive dimension, but L is 

admissible for the family 9 where each Kj g L. 

Also, the fact that a ring S with Noetherian spectrum has for each positive integer 

m only finitely many prime ideals P such that IS/PI <m [5, Theorem 2.2(c)] implies 

the existence of examples showing that (2) does not imply (3). To get an example 

of a one-dimensional integral domain S having infinitely many maximal ideals P such 

that IS/PI < m, one can start with the prime field F of characteristic 3 and realize S as 

an infinite integral extension of the polynomial ring F[t]. Making use of the argument 

given in [7, (1.2)], it is possible to obtain an infinite chain F(t) = Ko c K1 c K2.. . of 

algebraic field extensions of F(t) such that [K,+l : K,,] = 2 for each positive integer n, 

and such that the integral closure S of F[t] in the field U,“=, K,, has infinitely many 

maximal ideals P lying over tF[t] in F[t], each of these maximal ideals P having the 

property that S/P g F. 

4. Realizability for countable Boolean spaces 

Remarks 4.1. (4.1.1) If X is a Boolean space with finitely many non-isolated points, 

then X is the disjoint union of finitely many one-point compactifications of discrete 

spaces. Thus the question of whether a family of fields {Kx}nE~ is realizable for X 

reduces to admissibility considerations. 

(4.1.2) Let X be a set and X={K,},,X a family of algebraic extension fields 

of a prime field F. Corollary 2.8 implies that X is realizable for the one-point 
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compactification of a discrete space if and only if there exists L in X such that every 

subfield of L of finite degree over F embeds in all but finitely many of the K,. More 

generally, suppose n is a positive integer. The family $4C is realizable for a Boolean 

space with n non-isolated points if and only if there exist L1, . . . , L, E X such that X 

can be expressed as the disjoint union of n infinite subfamilies, say $, . . . , Xn, such 

that for 1 5 i < n every subfield of Li of finite degree over F embeds in all but finitely 

many of the fields in X’. 

(4.1.3) In view of (4.1.2), it is easy to give examples of families of fields that 

are realizable for a countable Boolean space with 12 non-isolated points, but are not 

realizable for a Boolean space with fewer than n non-isolated points. For example, 

let F be a finite prime field, let 52 be an algebraic closure of F, and let pi,. . . , p,, 

be distinct prime numbers. For 1 I: i 1. n and j 2 1, let Klj be the unique subfield of 

Q of degree p! over F. The family of fields X = Uy=, x‘, where x = {Kij}Fl, is 

realizable for a Boolean space with II non-isolated points, but Theorem 2.2 implies that 

X is not realizable for a Boolean space with fewer than n non-isolated points. 

(4.1.4) There also exist families of fields that are realizable for a countable Boolean 

space with one non-isolated point, but not for a Boolean space with more than one 

non-isolated point. For example, let F be a prime field, let {pj},zi be an infinite set of 

distinct prime numbers, and let Kj be an extension field of F of degree pj in a fixed 

algebraic closure of F. The family X = {F} U {Kj},?, is realizable for a Boolean 

space that is the one-point compactification of a countable discrete space, but is not 

realizable for a Boolean space with more than one non-isolated point. 

(4.1.5) Let F be a prime field, and suppose Xx= {Kx}xE~ is a family of field ex- 

tensions of F each of which is of finite degree over F. If X is realizable, then 

Theorem 3.1 of [4] implies there exists a finite subset {Ki}y=‘=, of X such that each 

K, contains an isomorphic copy of Ki for some i. Hence the realizability of a family 

X of extension fields of F of finite degree implies the realizability of this family X 

for a Boolean space with finitely many non-isolated points. 

(4.1.6) There exists a family of algebraic extensions of a finite prime field F that is 

realizable for a Boolean space X having infinitely many non-isolated points, but is not 

realizable for a Boolean space with finitely many non-isolated points. To obtain such 

an example one can modify [4, (3.6)], which is described in (3.1) above, as follows: 

(1) to each R/Pi = Ki associate a countably infinite number of copies Ku, j = 1,2.. . , 

of Ki, (2) let Ti = n,:, Kij, and let Ri be the Ki-subalgebra of Ti generated by the 

direct sum ideal of Ti (thus, Spec(Ri) is a Boolean space with one non-isolated point, 

and Ri is a realization of the family of fields {Kij},y1 U {Ki}), (3) let T = nz, Ri, 

and let S be the (unitary) subring of T generated by the direct sum ideal I = @y, Ri 

of T. Then I is a prime ideal of S, and S/I” R/Q = L. The family of residue fields 

of S is the disjoint union of the family of residue fields of the Ri together with {L}. 

To see that the family of residue fields of S is not realizable for a Boolean space 

with finitely many non-isolated points we make use of the incomparability of the Ki 
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and L. Assume that S’ is a reduced zero-dimensional ring that has the same family 

of residue fields as S. Let F$ be the prime of S’ at which the residue field is Ku. 

Then the sets {e:.li}j”=l, i = 1,2,. . . , are infinite pairwise disjoint sets in Spec(S’), and 

in view of (1.2) each one is closed, so each must contain a different non-isolated 

point. 

Several of the previous remarks concern the decomposition of a realizable family into 

several subfamilies, each realizable in its own right. The following question concerns 

the patching together of realizable families: 

Question 4.2. Let X be a countably infinite Boolean space and {K,: x EX} = X be 

a family of fields. Assume that for every closed subset Y of X such that Y is home- 

omorphic to the one-point compactification of a countable discrete space the family 

{KY : y E Y} is realizable for Y. Does it follow that X is realizable for X? 

(4.3) Suppose R is a zero-dimensional reduced ring. If K is a finite field such that 

R/P E K for each P in an infinite subset Y of Spec(R), then there exists a non-isolated 

point Q in Spec(R) such that R/Q embeds in K. (To see this, choose f E Z[X] such that 

f(a)= 0 for every c1 E K. Now R’=R/(n,,, P) embeds in n.,,(R/P), and every 

element of the product is also a root of f. Thus, for each maximal ideal Q’ of R’, the 

residue field R’/Q’ consists of roots of f. Choosing Q’ to be an accumulation point of 

Y in Spec(R’) and letting Q be the inverse image of Q’ in R yields the result.) But as 

noted in (2.1 .l), if K is an infinite field, then the transcendental extension field K(x) 

is admissible for the family consisting of infinitely many copies of K. 

Discussion 4.4. A well-known topological result states that an infinite Boolean space 

with no isolated points must be uncountable. (An argument for this is as follows: 

Suppose X is an infinite Boolean space having no isolated points. We can then write 

X = Us U U,, where Uo and Ui are nonempty disjoint clopen subsets of X, and then 

write Ui = UioUUil, where Uio and Uil are nonempty disjoint clopen subsets of Ui, i = 0 

or 1. The assumption that X has no isolated points implies that this process can be con- 

tinued to obtain for each sequence of O’s and l’s a descending sequence of nonempty 

clopen subsets of X. Since X is compact, these descending sequences of clopen subsets 

of X have nonempty intersections, which implies that X is uncountable.) Therefore 

if X is a countably infinite Boolean space, then X has an isolated point. Applying 

this to clopen subsets of X implies that the isolated points of X are dense in X. It 

follows that, in a countably infinite Boolean space, a non-isolated point is the limit 

of a sequence of isolated points. Therefore we have: 

Corollary 4.5. Suppose that X is a countable Boolean space and p is a non-isolated 

point of X. There exists a closed subspace Y of X containing p such that p is non- 

isolated in Y and Y is the one-point compactijication of a denumerable set of isolated 

points of X. 
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In algebraic terms, Corollary 4.5 implies: 

Corollary 4.6. Suppose R is a reduced zero-dimensional ring such that Spec(R) is 
countably injnite. Let Q be a maximal ideal of R that is not jinitely generated. 
There exists an ideal I c Q such that Q/I is the unique non-principal maximal ideal 
of R/I. 

The following corollary generalizes the example following (1.3). 

Corollary 4.7. Let !J be an algebraic closure of the field F, and let 2’= {L,},oO=, be 
a countably injinite family of fields with F c L, C 52 for each n. Assume L := n,“=, L, 
is not in 9, and that for every infinite set W of natural numbers, nnEW L, = L. Then 
2 is not a realizable family. 

Proof. Suppose _!Z’ is the family of residue fields of the zero-dimensional ring R. By 

(4.6) there is an infinite subfamily X = {Ki}zi of Z that is the family of residue 

fields of a homomorphic image S of R, where S has precisely one maximal ideal Q that 

is not finitely generated. Then S/Q = K E 2’. Since L $! 9, L g K. Take c in K - L, 
let c=ci , . . . ,c, be the conjugates of c over F in K, and set E = F(cl,. . . ,c,). By 

(2.2), for all but finitely many i, there exists an embedding of E into K;. Since there 

are only finitely many different F-embeddings of E into Q, it follows that the same 

F-isomorphic copy of E is contained in infinitely many of the Ki, so it is contained 

in L. But the only F-isomorphic copy of E in K is E itself. This contradicts the fact 

that c$L. 0 

(4.8) If one does not assume the fields L, in (4.6) are algebraic over a common field, 

then it may happen that the fields are all isomorphic and hence the family is realizable. 

For example, if {xi}Ei is a set of indeterminates over a field F and L, = F[{xi}i>,], 
then {L,}nz, is realizable. 

We close by proving a fairly general theorem (4.9) on F-realizability for countable 

Boolean spaces. We use a method somewhat different from that in Section 2. 

Recall the Cantor-Bendixson derivative of a topological space X:X(‘) =X, for the 

ordinal a, Xca+‘) =X(“)-{isolated points of Xca)}, and X(b) = n,,BX(a) if p is a limit 

ordinal. If X is a denumerable Boolean space, we know from (4.4) that Xc”) -Xca+‘) 

is a dense subset of X(‘), so there is an ordinal y such that X(Y) = 8. By compactness, 

the least such ordinal y is a successor; we let A(X) be the smallest ordinal 3, such 

that X(“+‘) = 0. For an element n EX, we let A(x) be the least ordinal a such that 

X&Y@+‘). 

The following theorem should be compared with (1.4). Note that here we impose 

no compatibility assumptions on the embeddings. The proof consists of “straightening” 

the embeddings to make them compatible. 

Theorem 4.9. Let X be a denumerable Boolean space, let F be a field, and let 
X={K,: x EX} be a family of extension fields of F indexed by X. Assume 
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either that 2(X) is finite or that each K, is a finite algebraic extension of F. Suppose 
each point x in X has a neighborhood U, such that K, has an F-embedding into KY 

for every y in U,. Then the pair (X,x) is F-realizable. 

Before embarking on the proof we note the following corollary of (4.9) and (1.2). 

Corollary 4.10. Let X be a denumerable Boolean space, let F be a jield, and let 
s+? = {K,: x EX} be a family of extension fields of F indexed by X. Assume [Kx : F] 
< 0~) for each x in X. Then the pair (X, 3Y) is F-realizable tf and only if each point 
x in X has a neighborhood U, such that K, has an F-embedding into KY for every 

YE VI. 

It is interesting to compare (4.10) with (3.1) and (3.1A) of [4] where realizability 

is considered on the family % = {K,: x E X} without regard to the Boolean topology 

on X. 

Theorem 4.9 is a special case of the following: 

Theorem 4.11. Let X be a denumerable Boolean space, let F be a field, and let 
~?7 = {K,: x E X} be a family of extension fields of F indexed by X. Assume that for 
every x in X there exist a neighborhood U, of x and an F-embedding f, : K, + KY 
for every y in U,. Assume further that the following condition is satisfied 

(t) There is no injinite sequence x1,x2,x3,... in X such that for all i > 1, 

(i) Xi E Uxr+, > 
(ii) n(xi ) < &xi+ 11, and 

(iii) Ki+l is F-isomorphic to a proper subjield of Ki (where Kj = K+). 

Then the pair (X, ,X) is F-realizable. 

Proof. Our first task is to shrink the open sets U, in order to eliminate potential 

incompatibility problems among the field embeddings. We claim that one can find, for 

every x in X, a clopen set V, such that the following are true: 

(l)xEV,C:U, foreveryxinx. 

(2) If YE V, and yfx, then @)-CL(X). 

(3)IfV,nV,#L?~theneithery~V,orx~V,. 

To see this, note that D, :=X(‘) - Xc’+‘) is discrete in the relative topology 

for every CI 5 L(X). Thus for each x EX there is a neighborhood W, of x such 

that W, n DzCIj = {x}. If we now choose, for every x E X, a clopen set V, such that 

x E V, C U, n W,, we will satisfy requirements (1) and (2). To accomplish (3) we may 

need to shrink the sets V,. We do this by enumerating X, say, X = {x1,x2,x3,. . .}, 

and by replacing V, by I&_ - U{ Kg: i <n and x, 6 V,}. 

Using our clopen sets V,, we will introduce a useful partial ordering on X. We first 

define a relation # on X by declaring that 

x#yex#y and REV,. 
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The relation # can be used to define a partial order 5 on X: x 3 y if and only if 

there is a sequence x = zo #zl # . . . #z, = y for some m > 0. (The relation 3 is anti- 

symmetric by (2): If x# Y, then A(x) <A(Y).) We write x + Y to indicate that x 5 Y but 

x# Y. 
For future reference we note 

(4) A(x) < A(y) if x 4 y. 

The following observation tells us that our partially ordered set is actually a tree: 

Claim. For each x EX, the set C, := {y EX: x 5 y} is a chain. 

Toseethis,letp,qEC,,say,x=zo#zl#...#z,=pandx=wo#wl#...#w,=q. 

We may assume that m >O and n >O and proceed by induction on m + n. Since 

x E V,, n V,, , we may assume, using (3) and symmetry, that either zt = w1 or zr # wl. 

Then P, q E G, , and by induction (since m + n has dropped by either 2 or 1) we have 

either p 5 q or q 5 p. This completes the proof of the claim. 

Now consider the chains C, for x in X -X (l) Suppose for the moment that we have . 

defined compatible F-embeddings cry= = 0; : K, --+ KY whenever y,z E C, and y 5 z. The 

compatibility conditions are 

(a) ayu is the identity map on KY for every y E C,, and 

(b) qvzcm = cyw if y,z,w~C, and ydzdw. 

(The temporary superscript x reflects the possibility that the oyZ may depend on x.) 

Still assuming that we have defined compatible embeddings on each chain C,, we 

now wish to define crVZ for every pair y,z of elements of X with y 5 z. Note first that U, 

contains a point of X -X(l) (since X --X(l) is dense in X) and thus y,z E C, for some 

x in X --X(l). The only problem is to define the embeddings consistently on the union 

of the various chains. Enumerate X --X(l), say, X -X(l) = {x1,x2,. . .}, and suppose we 

have defined an F-embedding oyZ : K, -+I$whenevery~zandy,z~T,:=C,,~~~~uC,, 

in such a way that 

(c) qyu is the identity map on KY for every y E T,, and 

(d) +A,+ = oyw if y,z,wETn and yiz5w. 

If Cxn+, n T, = 0, we extend our definition to T,+, by letting 0 be ++I on Cxn+, . 

Otherwise, we let t be the smallest element of Cxm+, n i’l,. (Note that I?~~+, is well- 

ordered, by (3) and (4).) Now IQ+, is the union of two pieces meeting only at t, 

namely A := {y E Gn+,: y 5 t} and B := {y E G.,,: t 5 y}. Since B C T,, we just need 

to know how to define c+ when either y or z is in A. If both y and z are in A we 

use aXn+‘. If yEA and zET, we cannot have z+y, so suppose y5z. Then tdz by 

the Claim, and we simply let a,= = a$+‘orr. 

Still assuming that we have defined compatible embeddings on each chain C, for 

x in X --X(t), we now have, for each pair of elements y 3 z in X, an F-embedding 

OjJZ f . KZ + KY. Moreover, since any three elements with y 5 z 3 w all belong to some 

chain C,, our embeddings satisfy the compatibility conditions: 

(e) a,, is the identity map on KY for every y EX, and 

(f) “yz%v = ayw if y,z,w~X and y5zZw. 
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Once we have these maps, the proof of the theorem is rather standard, but we will put 

in the details. Let 12” denote the disjoint union of the fields K,, and let rc: u X --tX 

be the map sending each a in K, to x. We topologize u z%? as follows: Given CI in K,, 

a basic open neighborhood of CI is a set of the form W(a) := {cr&cc): y E W}, where W 

is an open neighborhood of x in V,. With this topology rc maps W(a) homeomorphically 

onto W and thus is open and locally homeomorphic. Thus we have a sheaf. (The 

compatibility of the maps is needed here: If p = a,(~) E KY with y E W we need to 

know that B has a basic neighborhood that is contained in W(a). But this is easy: If 

W’(p) is any basic neighborhood of /?, then (W fl W’)(B) is contained in W(a) by the 

compatibility conditions.) 

Clearly R := T(X, X) is a reduced F-algebra. For each x in X let P, be the kernel 

of the map R + K, taking p to p(x). We want this map to be surjective. Given any CL 

in K,, define p(y) = 0 outside the clopen set V,, and for z in V, we put p(z) = a,(cr). 

Then p is a global section whose value at x is ~1, as desired. So now we know that 

R/P, ZF K,. 

Next we show that R is von Neumann regular. Given p E R, let C be the support of p 

(a closed set for any sheaf). Then C is also open. (For, let x E C, say, p(x) = a E K, - 

(0). Choose, by continuity, a neighborhood N of x such that p(y) E V,(a) for every 

y EN. Since field homomorphisms are injective, N G C.) Now define a section r by 

letting z(x) = l/p(x) if x E C and r(x) = 0 if x 4 C. Then prp = p. 

The map XH P, is one-to-one: If x # y there is a clopen set D containing x but 

not y. There is then a section taking the value 0 on D and 1 on X -D. 

Every maximal ideal of R is of the form Px: For, suppose I is an ideal not con- 

tained in any P,. Choose px in I - P,., and let C, be the support of px. As shown 

above C, is clopen, and we can choose a finite disjoint clopen refinement of the 

covering {Cn: xEX}, say {Cl,..., Cn}. We have sections pi with Supp(pi) > Ci. 

Let .si be the idempotent with support Ci. Then ~1~1 + .. . + ~,p, is a unit 

in I. 

Now we have a bijective map X + Spec(R). Since both spaces are compact 

Hausdorff, the map is a homeomorphism if it is continuous. But continuity is easy: 

Given a basic open set D(p) of Spec(R), where p E R, we have D(p) = {Px: p +! Px} 

= {Px: p(x)# 0}, and the inverse image of this set under the map X + Spec(R) is the 

support of p, which we know is clopen. 

We still need to define compatible maps on each chain C := C,, where x is now a 

fixed element of X -Xc’). (This is where we need the extra assumption (t).) Suppose 

first that C is finite, say, C={x~,...,x~}, withx=xs# ... #xn. We havexi_i E V,, for 

1 5 i 5 n. Therefore if 0 < i I j I n we define %,xj = fx,x,+, fx,+,x1+2 . . . fxj_,+. 
Finally, suppose that C is infinite. Since C is well-ordered by 4, we will define our 

F-embeddings on C by transfinite induction. For each t E C, let Et = {y E C: y + t}. 

Suppose we have defined F-embeddings rr__Z on E,, for some t >O, in such a way that 

(a) and (b) are satisfied. We want to extend our definitions to Et U {t}. If t is a 

successor in C, let u be its predecessor. Then u E &, and if y E El we let out = o,,,,fat 
(and we let elf be the identity). 
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If t is not a successor, there is a sequence y1 + y2 + ys + . . . in Et with t = 

SUp{yi: i> 1). (Countability is used here.) By (4) and assumption (t) there is an 

m such that Q, is an isomorphism for every n 2 m. If y,,, 5 p 3 q + t we can choose 

n such that q 3 y, and conclude easily that oP4 is an isomorphism. Since ym + t there 

is an element p such that y,,, 3 p # t. If, now, q E Er we define 

gtq = 1 ~pllfpt if P 5 4 

~qpfpt if q 3 p. 

We define on to be the identity map. A simple transfinite induction completes the proof 

of the theorem. q 
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